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A quasi-harmonic molecular-mean-®eld model for analyzing anharmonic

temperature evolution of anisotropic displacement parameters is described.

Anharmonic effects are taken into account through a GruÈ neisen-type

temperature dependence of effective vibrational frequencies. The method is

applied to neutron and X-ray diffraction data of hexamethylenetetramine

measured between 15 and 298 K. The resulting GruÈ neisen parameters and other

characteristics of molecular motion in the solid state agree well with those

obtained from independent vibrational data. The analysis also suggests errors in

the ADP's due to insuf®cient extinction corrections in the diffraction data.

1. Introduction

Diffraction experiments with neutrons or X-rays yield

information on the scattering density in a crystal averaged

over space and time. This information is usually param-

eterized in terms of spherically symmetric atomic form

factors and Gaussian distribution functions to obtain mean

atomic positions and harmonic displacement parameters.

When the measurements are suf®ciently accurate, additional

information on chemical bonding and anharmonic thermal

vibrations can be extracted from the structure amplitudes.

Multipolar deformation functions (Stewart, 1976; Coppens,

1997) and Gram±Charlier series expansions of probability

density functions (Johnson & Levy, 1974; Coppens, 1993)

are often used in structure re®nement to account, respec-

tively, for asphericity of form factors and deviation from

Gaussian distributions. These parameterizations have the

advantage of providing a general and potentially complete

model of the electron density at the level of the indepen-

dent-atom approximation to the electron-density function.

Their disadvantage is that the number of parameters

increases sharply with the order of the multipolar or Gram±

Charlier expansion. These models do not account explicitly

for the temperature dependence of the probability density

function but their parameters, determined at different

temperatures, may be tested a posteriori for the expected

dependence (e.g. T 0 for multipolar parameters, T for aniso-

tropic displacement parameters, T 2 for third-order anhar-

monicity parameters etc.)

Here we present an alternative relatively simple method

to parameterize effects of anharmonicity in diffraction data.

It is based on a recently developed model for analyzing the

temperature evolution of anisotropic displacement param-

eters (ADP's), i.e. of the central second moments of the

atomic probability density function (BuÈ rgi & FoÈ rtsch, 1999;

BuÈ rgi & Capelli, 2000; Capelli et al., 2000). The model assumes

a harmonic molecular mean ®eld and considers temperature-

dependent as well as temperature-independent contributions

to ADP's. The former account for low-frequency normal

modes of vibration and are characterized by effective

frequencies and associated atomic displacement vectors. The

latter account for the high-frequency normal modes and take

the form of an atom-speci®c correction term. At high

temperatures, it is sometimes observed that ADP's do not

increase linearly with temperature, i.e. they do not show

harmonic behavior. Such effects can largely be taken into

account through a simple GruÈ neisen-type temperature

dependence of the frequency of each normal mode

(GruÈ neisen, 1926), together with the assumption that the

associated eigenvectors do not change. The anharmonic model

has the same form as the harmonic one and is sometimes

called the quasi-harmonic model.

This approach is illustrated with an analysis of the ADP's

of hexamethylenetetramine (HMT) studied by neutron and

X-ray diffraction at seven different temperatures [15, 50, 80,

120, 160, 200 and 298 K (Dickinson & Raymond, 1923;

Duckworth et al., 1970; Stevens & Hope, 1975; Kampermann

et al., 1994, 1995; Terpstra et al., 1995)]. Effects of anharmo-

nicity on effective vibrational frequencies are compared to

those observed directly by neutron inelastic scattering

(Dolling & Powell, 1970; Thomas & Ghosh, 1975). Results

obtained by vibrational spectroscopy (Bertie & Solinas, 1974;

Cyvin, 1972) and speci®c heat measurements will also be

considered (Chang & Westrum, 1960). This work shows that

the simple quasi-harmonic model can quantify, through a

GruÈ neisen parameter, the anharmonic motion of the HMT

molecules in the solid state. An analysis based on a simpler

model was presented earlier (Birkedal et al., 1997).
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2. ADP analysis

In the harmonic approximation, the mean-square displace-

ment hu2i of a quantum oscillator from its equilibrium position

is given by

hu2i � h- =�2!m� coth�h- !=�2kBT��; �1�
where m is the mass of the oscillator, ! the vibrational

frequency, h- the Planck constant (h- � h=2�), kB the Boltz-

mann constant and T the temperature (Cyvin, 1968). Fig. 1

shows the temperature dependence of hu2i. In the low-

temperature limit, hu2i is inversely proportional to ! and

independent of T:

hu2i � h- =�2!m� � �0 �T ! 0�; �2�
where �0 represents the zero-point mean-square amplitude

(quantum regime). In the high-temperature limit, hu2i behaves

classically; it varies linearly with the temperature and with the

inverse square of !:

hu2i � kBT=�!2m� � sT �T !1�; �3�
where s is the slope of the curve in the linear region. This

relation also implies that mean-square amplitudes measured

at high temperature must extrapolate to zero at 0 K. When-

ever experimentally determined ADP's do not ful®l this

condition, additional factors contribute to the ADP's, e.g.

anharmonicity, vibrations with large frequencies, disorder or

systematic error.

At temperature �0E, the zero-point mean-square amplitude

and the classical mean-square amplitude are the same:

�0E � h- !=�2kB� � �E=2: �4�
�0E is half of the Einstein temperature �E. It can be consid-

ered the borderline between the two limiting regimes.

In the molecular mean-®eld approximation, the motions of

a molecule in a crystal are modeled with a collection of

independent oscillators moving in an effective potential given

by the average crystal environment (BuÈ rgi, 1995). This leads to

a simple description of the temperature evolution of the

ADP's. The physical and mathematical details are given

elsewhere (FoÈ rtsch, 1997; BuÈ rgi & FoÈ rtsch, 1999; BuÈ rgi &

Capelli, 2000). Here we recall only the general expression

Rx � AgVd�!;T�VTgTAT � ""x: �5�
Rx is the mean-square amplitude matrix in atomic positional

coordinates. The 3 � 3 diagonal blocks of the Rx matrix are

the ADP's obtainable from elastic diffraction experiments.

The off-diagonal blocks are not available from such experi-

ments, implying that the direct information on the coupling of

atomic motions is lost. The matrix d is diagonal with elements

�j � h- =�2!j� coth�h- !j=�2kBT��; the �j's are the temperature-

dependent mean-square amplitudes of the low-frequency

molecular vibrations, mainly translation and libration. The

matrix V transforms normal coordinates to mass-adjusted

molecular coordinates. The product matrix (Ag) represents

the transformation from mass-adjusted molecular coordinates

to atomic positional coordinates and depends only on atomic

coordinates and masses. The correction term ""x accounts for

temperature-independent contributions such as those from

high-frequency molecular vibrations and disorder but also

those due to inadequate treatment of absorption, extinction,

valence electron density etc. The different contributions to ""x

can be separated reliably only with the help of additional

independent information and empirical rules derived from IR

and Raman spectroscopy or ab initio calculations of vibra-

tional properties (Higgs, 1955). Empirically, it is found that the

values of ""x derived from the ADP's are in good agreement

with the ones calculated from spectroscopic data (FoÈ rtsch,

1997) if disorder, anharmonicity and systematic errors in the

diffraction data or in the model are negligible (Capelli, 1999).

In practice, ""x is expressed through individual "" tensors

de®ned in a local coordinate system for each atom and

transformed to the working coordinate system by ""x � T""TT.

This allows the same "" to be assigned to symmetrically

equivalent or chemically similar atoms in a molecule.

The lack of information on the off-diagonal 3 � 3 blocks of

the mean-square amplitude matrix Rx can be compensated, to

some extent, by measuring the diagonal part of Rx at multiple

temperatures. From such data, the unknowns in equation (5),

namely the elements of the eigenvector matrix V, the normal

frequencies !j and the diagonal 3 � 3 blocks "" of ""x can be

determined via a non-linear least-squares procedure after

expansion in a Taylor series to ®rst order. The full calculation

Figure 1
Temperature dependence of the mean-square amplitude of a single
oscillator. Comparison between harmonic (thin solid line), positive
anharmonic (thick solid line) and negative anharmonic (dashed thick
line) mean-square displacements as calculated using equation (1), where
the expression for the frequency is that given in equation (18) and the
numerical values are: ! = 50 cmÿ1, m = 140 a.m.u., � = 2 � 10ÿ4 and 
G =
0.0, 2.5 and ÿ2.5, respectively. The zero-point mean-square amplitude �0

(double arrow), the linearity of the harmonic curve at high temperature
and the characteristic temperature �0E are also shown (dotted lines).



is implemented in a computer program (FoÈ rtsch, 1997; Capelli,

1999). A simple extension of this analysis capable of dealing

with the main effects of anharmonicity is discussed in the next

section.

3. Anharmonicity

The model outlined above is harmonic but real crystals are

anharmonic: they commonly expand on heating. On average,

the interactions between the atoms are thereby reduced,

leading to a reduction of the vibration frequencies and to

mean-square amplitudes of motion that are larger than

expected for a harmonic crystal (positive anharmonicity). It is

also possible that a crystal shrinks on heating and therefore

the vibration frequencies increase while the mean-square

amplitudes decrease with respect to harmonic behavior

(negative anharmonicity; Evans et al., 1997). In Fig. 1, the

mean-square displacements of anharmonic oscillators are

compared to those of a harmonic one. Linear extrapolation of

the high-temperature part of the anharmonic curves

(T> 2�0E) no longer implies zero mean-square amplitudes at

0 K, but negative values in the case of positive anharmonicity

and positive values in the case of negative anharmonicity. If a

harmonic analysis of ADP's leads to physically impossible,

negative or implausibly large positive ""x tensors, anharmonic

motion is indicated.

A description of such motion is developed on the basis of

the classical and quantum-mechanical monoatomic linear

chains with nearest-neighbor interactions. The treatment is

then generalized to the three-dimensional crystal and incor-

porated into the model of ADP analysis summarized in the

preceding section. N identical atoms with mass m arranged in

a regular chain are assumed to interact through a generic

anharmonic potential V, e.g. a Morse potential (Fig. 2; Morse,

1929), a Lennard-Jones (12,6) potential (Lennard-Jones, 1924)

or a Buckingham (exp,6) potential (Buckingham, 1938). For

our purposes, the speci®c form of the empirical param-

eterization is unimportant, since the sum of repulsive and

dispersive interatomic interactions will be replaced by a

polynomial expansion.

If the average interatomic distance a(T) changes with

increasing temperature, it is convenient to express the

potential energy of the chain as a function of this change

�a�T� � a�T� ÿ a0, where a0 is the equilibrium interatomic

spacing. The potential energy of the chain, represented as a

Taylor expansion, is, to within an additive constant,

V�T� � f0

P
l

��a�T� � ul ÿ ul�1�2=2

� g0

P
l

��a�T� � ul ÿ ul�1�3=3!

� h0

P
l

��a�T� � ul ÿ ul�1�4=4!� . . . �6�

with ul the instantaneous displacement of the lth atom in the

chain from its mean separation a0 ��a�T� and ul�1 the

instantaneous displacement of its adjacent neighbor; f0, g0 and

h0 are, respectively, the quadratic, cubic and quartic force

constants of the potential-energy function.

The equilibrium probability density function

P�u1; u2; . . . ; uN�
� exp�ÿV��a�T�; u1; u2; . . . ; uN�=kbT�R �1

ÿ1 exp�ÿV��a�T�; u1; u2; . . . ; uN�=kbT� du1 du2 . . . duN

�7�

minimizes the potential-energy contribution to the Helmholtz

free energy F of the chain.

F�P� � R�1
ÿ1

P�u1; u2; . . . ; uN�V�u1; u2; . . . ; uN� du1 du2 . . . duN

� kBT
R�1
ÿ1

P�u1; u2; . . . ; uN�

� ln P�u1; u2; . . . ; uN� du1 du2 . . . duN; �8�

where the ®rst term represents the internal energy and the

second term the entropy contribution. In line with the mean-

®eld model introduced in the previous section, the equilibrium

density function is approximated by a product of independent

harmonic oscillator probability densities, one for each atom

(Thomas, 1971):

P0�u1; u2; . . . ; uN� � 1=�2���N=2
QN
l�1

exp�ÿu2
l =2��: �9�

The atomic probability density function of each atom is a

Gaussian with width ��T�1=2 and centered at the mean atomic

position, i.e. two consecutive Gaussians are a distance a(T)

apart. Recall that

hun
l i � 1=�2���1=2

R�1
ÿ1

un
l exp�ÿu2

l =2�� dul

� 0 for n odd

1� 3� . . .� �nÿ 1��n=2 for n even

�
�10�

so the free energy becomes
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Figure 2
Representation of the anharmonic Morse potential as function of the
interatomic distance (a ÿ a0).
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F�P0� � f0�a�T�2=2� g0�a�T�3=3!� h0�a�T�4=4!

� �f0 � g0�a�T� � h0�a�T�2=2�� � h0�
2=2

ÿ �kBT=2� ln �: �11�
The ®rst three terms represent the thermal elastic energy. The

terms linear in � represent the quasi-harmonic energy, so

called because the expression in square brackets looks like an

effective harmonic force constant f, albeit one that depends on

thermal expansion �a and thus on temperature. The quartic

anharmonic contribution to the energy is given by h0�
2=2 and

the entropic contribution by �kBT=2� ln �. Except for a small

difference in the quartic anharmonic energy, this result is the

same as that of a more complete lattice dynamical treatment

(BruÈ esch, 1982).

Since the trial probability density function P0 is only

approximate, F�P0�must be minimized by optimizing �a and �
with the so-called mean ®eld relations

@F�P0�=@� � f� � h0�
2 ÿ kBT=2 � 0 �12�

@F�P0�=@�a � f0�a�T� � g0�a�T�2=2� h0�a�T�3=6

� �g0 � h0�a�T��� � 0: �13�
For a classical oscillator, it follows from the ®rst condition that

��T� � kBT=2f �T� � kBT=�2m!2
eff�T��; �14�

if second- and higher-order terms in T=f are neglected. This

looks like the mean-square amplitude of a harmonic oscillator,

but with temperature-dependent force constant f or vibra-

tional frequency !eff. For a quantum oscillator,

��T� � h- =�2m!eff�T�� coth�h- !eff�T�=�2kBT��: �15�
From the second condition, an upper limit for �a is obtained,

�a�T� � ÿg0kBT=2f 2
0 ; �16�

if terms in h0 are neglected. Note that for the quantum oscil-

lator the average interatomic distance at 0 K, a(0), differs from

the equilibrium separation a0. It can be obtained by numerical

solution of the second mean-®eld relation [equation (13)].

The explicit expression for the effective frequency !eff

becomes

!eff � �f0=m�1=2�1ÿ g2
0kBT=4f 3

0 �
� !0f1� �a0g0=2f0���a�T�=a0�g; �17�

where !0 � �f0=m�1=2 is the corresponding harmonic

frequency. The relative change in frequency is thus propor-

tional to the thermal expansion �T (BruÈ esch, 1982) and to a

proportionality factor called the GruÈ neisen parameter 
G

(GruÈ neisen, 1926):

�!=!0 � ÿ
G�T; �18�
where 
G � ÿa0g0=2f0 and � is the thermal expansion coef-

®cient. This approximation can be transferred to the three-

dimensional crystal. GruÈ neisen parameters are de®ned in

analogy to equation (18):

�!� j�=!0� j� � ÿ
G� j��V�T�=V0 � ÿ
G� j��T; �19�

one for every normal mode j considered explicitly in equation

(5). The unit-cell volume V0 at 0 K is usually not available.

Therefore, the expression �V�T�=V0 is replaced by

�V�T�=Vmin, where Vmin is the unit-cell volume at the

lowest experimental temperature Tmin. The volume V(T) is

expressed as a power series in the temperature,

V�T� � V0 � v1T � v2T2 � . . .; the coef®cients v1, v2 of

thermal expansion are obtained by linear regression. With the

difference �V�T� � V�T� ÿ V0, which is independent of V0,

the expression for the frequencies used in numerical calcula-

tions becomes

!eff� j;T� � !0� j��1ÿ 
G� j��V�T�=Vmin�; �20�
where !eff is the effective anharmonic frequency of the normal

mode j at temperature T and !0 is the corresponding harmonic

frequency. The atomic mean-square amplitudes are

Rx � AgVd�!0;T; 
G�VTgTAT � ""x; �21�
where d is now also a function of the GruÈ neisen parameters


G. As before, 
G depends on the higher-order force constants

considered in the series expansion of the interatomic poten-

tial. Note that this approximation assumes that the eigenvec-

tors V do not change under the in¯uence of anharmonicity.

This approximation may not always hold at very high

temperatures. Except for the dependence of d on 
G, the

anharmonic model in equation (21) looks the same as the

harmonic one in equation (15), and is therefore called `quasi-

harmonic' (Willis & Pryor, 1975).

4. Application to hexamethylenetetramine

Hexamethylenetetramine (HMT) has attracted interest from

the chemistry and physics communities for a long time because

its molecular structure is simple and its molecular symmetry is

high (�43m). The latter is preserved in the solid state, since the

molecule occupies special positions with the same symmetry in

space group I �43m. The asymmetric unit is composed of only

three atoms, all of them sitting in special positions (Table 1).

Several diffraction investigations have been reported for

HMT: the pioneering X-ray study at several temperatures by

Becka & Cruickshank (1963); highly accurate neutron

measurements, corrected for absorption, extinction and

Table 1
Ab initio equilibrium geometry compared with the 15 K neutron data
from Kampermann et al. (1995).

Coordinates (AÊ ) Interatomic parameters

Present work
Present
work

From Kampermann
et al. (1995)

x(C) 1.67343 CÐH (AÊ ) 1.084 1.097 (3)
x(H) 2.31121 CÐN (AÊ ) 1.460 1.473 (2)
y(H) ÿ0.61969 NÐCÐH (�) 109.24 108.4 (2)
x(N) 0.85561 HÐCÐH (�) 107.91 110.7 (2)

NÐCÐN (�) 111.89 112.6 (5)
CÐNÐC (�) 108.23 108.0 (1)



thermal diffuse scattering (Duckworth et al., 1970) and high-

resolution X-ray measurements, corrected for thermal diffuse

scattering (Stevens & Hope, 1975), both of them taken at

298 K and re-re®ned with third-order Gram±Charlier coef®-

cients for the description of anharmonic vibrations (Terpstra et

al., 1995); X-ray diffraction measurements at 120 K used for

charge-density studies (Kampermann et al., 1994); more recent

neutron diffraction measurements at 15, 50, 80, 120, 160, 200 K

undertaken to study the effects of extinction and nuclear

thermal vibrations (Kampermann et al., 1995). The latter data

represent a consistent set of measurements performed on the

same crystal and processed with the same techniques. Their

precision decreases somewhat with increasing temperature:

between 15 and 200 K; the standard deviations �(U ij) vary

from 0.0002 to 0.0006 AÊ 2 for C and N, and from 0.0004 to

0.0011 AÊ 2 for H (Kampermann et al., 1995). Related data from

different techniques are also available: mean-square ampli-

tudes for the hydrogen atoms from incoherent neutron

inelastic scattering (Thomas & Ghosh, 1975) and from vibra-

tional analysis (Cyvin, 1972), experimental IR and Raman

frequencies (Bertie & Solinas, 1974), phonon-dispersion

curves at 100 and 298 K from coherent neutron inelastic

scattering on deuterated HMT (DHMT; Dolling & Powell,

1970), as well as speci®c heat data (Chang & Westrum, 1960).

In order to test the method of analysis outlined in the two

preceding sections and the potential of the quasi-harmonic

approximation implemented in it, the ADP's of HMT

measured by neutron diffraction experiments at 15, 50, 80,

120, 160 and 200 K are studied ®rst (Kampermann et al.,

1995). The best model of motion obtained from these data (54

ADP's) is then re®ned against all nine available sets of

accurate structural data (81 ADP's) to test model robustness.

The results are compared to the independent non-diffraction

information.

The model of motion consists of the six low-frequency

external modes of vibration and of three temperature-inde-

pendent correction terms ", one each for N, C and H. Because

of the cubic site symmetry, the three translation frequencies

are degenerate, as are the three librational frequencies. Thus,

there are only two independent frequencies with corre-

sponding GruÈ neisen parameters to be determined. Libration

and translation belong to two different irreducible repre-

sentations of the molecular point group (T1 and T2, respec-

tively); therefore, they do not mix and the 6 � 6 eigenvector

matrix V is simply a unit matrix.

The coordinate system used in the analysis is Cartesian. Its

axes coincide with the crystallographic �4 axes, i.e. they pass

through pairs of carbon atoms. The local coordinate system for

the nitrogen atom has the x direction along the threefold axis;

the y direction is orthogonal to the threefold axis in one of the

molecular mirror planes and the z direction is orthogonal to

the previous two. The site symmetry of the nitrogen atom is

3m, implying the constraints "ij � 0 for i 6� j and "22 � "33 (1

stands for the x, 2 for the y and 3 for the z direction). The local

coordinate system of the carbon atom has its x axis along the �4
axis, the y axis in the mirror plane containing the neighboring

nitrogen atoms and the z axis in the mirror plane containing

the bonded hydrogen atoms. The site symmetry is mm2 so that

"ij � 0 for i 6� j. The local coordinate system for the hydrogen

atom is de®ned with x along the CÐH bond, y parallel to the

mirror plane containing the nitrogen atoms and z in the

HÐCÐH plane, orthogonal to the previous two; the site

symmetry is m so that "13 may differ from zero. Each of the

local coordinate systems is right-handed Cartesian.

Visual inspection of the ADP's plotted as a function of

temperature (Fig. 3) shows that, except for U11 of the

hydrogen atoms, the mean-square amplitudes at temperatures

larger than 100 K extrapolate to more or less negative values

at 0 K. This, together with the thermal expansion of the

crystal lattice, is a clear indication of anharmonicity

[a�15 K� � 6:9274 �8�, a�298 K� � 7:028 �2� AÊ ].

Numerical calculations are based on the model given in

equation (21). The parameters optimized in each model are

listed in Table 2. The results for the harmonic model 1_h

con®rm the visual impression (Table 2). The elements of ""(C)

and ""(N) are negative, i.e. unphysical, and those of ""(H) are

too small compared to those calculated ab initio (see below,

Table 3). Although the agreement factor (wR2 ~3%) and the

goodness of ®t (~1.4) look quite impressive, the differences

(Uobs ÿ Ucalc) plotted in Fig. 4(a) tell a different story. A

systematic trend can be recognized: differences are over-

whelmingly positive at 15, 160 and 200 K and negative at the

three intermediate temperatures. Both observations indicate

the presence of anharmonicity.

Several anharmonic models have been tried. Introducing a

GruÈ neisen constant for either translation or libration (Table 2,

models 1_at, 1_al), the components of ""(N) and ""(C) become

Acta Cryst. (2000). A56, 425±435 BuÈ rgi et al. � Anisotropic displacement parameters 429

research papers

Figure 3
Unique diagonal values of U(H), U(C) and U(N) as a function of
temperature (diffraction experiments by Duckworth et al., 1970; Stevens
& Hope, 1975; Kampermann et al., 1994, 1995).
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Table 2
Summary of results obtained with different models of motion for the analysis of ADP's of HMT from neutron diffraction data at six and nine temperatures (for explanation of symbols see
text).

Values in square brackets refer to epsilon tensors restrained to the scaled ab initio values.

Model wR2² Gof npar³
!lib

(cmÿ1) 
G(lib)

!trans

(cmÿ1) 
G(trans) ""(N) � 104 (AÊ 2) ""(C) � 104 (AÊ 2) ""(H) � 104 (AÊ 2) ""(all) � 104 (AÊ 2)

1_h 2.95 1.39 46.9 (2) ± 45.5 (2) ± ÿ11 (1) ± ± ÿ7 (1) ± ± 49 (1) ± 1 (1)
ÿ8 (1) ± ÿ10 (1) ± 113 (1) ±

12 ÿ8 (1) ÿ13 (1) 142 (1)

1_at 2.10 0.991 46.7 (1) ± 52.7 (4) 5.3 (3) ÿ3 (1) ± ± 2 (1) ± ± 57 (1) ± 1 (1)
0 (1) ± ÿ2 (1) ± 120 (1) ±

3 0 (1) ÿ5 (1) 150 (1)

1_al 1.79 0.851 52.7 (3) 4.5 (2) 45.5 (1) ± ÿ12 (1) ± ± 7 (1) ± ± 55 (1) ± 11 (1)
0 (1) ± ÿ1 (1) ± 133 (1) ±

3 0 (1) ÿ4 (1) 156 (1)

1_atl 1.73 0.821 50.3 (2) 2.8 (2) 49.2 (2) 2.8 (2) ÿ7 (1) ± ± ÿ2 (1) ± ± 57 (1) ± 7 (1)
1 (1) ± 0 (1) ± 130 (1) ±

3 1 (1) ÿ3 (1) 155 (1)

1_a 1.72 0.811 51.1 (3) 3.4 (2) 48.0 (4) 2.0 (3) ÿ9 (1) ± ± ÿ4 (1) ± ± 56 (1) ± 8 (1)
1 (1) ± 0 (1) ± 131 (1) ±

4 1 (1) ÿ3 (1) 156 (1)

2_atl 3.84 1.80 51.1 (3) 4.7 (3) 56.6 (4) 4.7 (3) [15] ± ± [16] ± ± 68 (2) ± 5 (1)
[11] ± [13] ± 138 (2) ±

7 [11] [15] 165 (2)

3_atl 3.23 1.52 52.3 (3) 4.0 (3) 51.5 (4) 4.0 (3) ÿ4 (1) ± ± 1 (1) ± ± [68] ± [7]
8 (1) ± 7 (1) ± [136] ±

9 8 (1) 2 (1) [188]

4_atl 4.35 2.04 51.7 (4) 4.9 (3) 56.5 (5) 4.9 (3) [15] ± ± [16] ± ± [68] ± [7]
[11] ± [13] ± [136] ±

3 [11] [15] [188]

5_atl 3.10 1.46 49.5 (3) 2.7 (3) 49.5 (4) 2.7 (3) [15] ± ± [16] ± ± [68] ± [7] ÿ16 (1) ± ±
[11] ± [13] ± [136] ± ÿ 16 (1) ±

4 [11] [15] [188] ÿ16 (1)

6_atl 2.39 1.13 49.0 (2) 2.5 (2) 49.6 (3) 2.5 (2) [15] ± ± [16] ± ± 72 (1) ± 3 (1) ÿ16 (1) ± ±
[11] ± [13] ± 139 (1) ± ÿ16 (1) ±

8 [11] [15] 167 (1) ÿ16 (1)

6_atl(9T) 3.13 1.53 49.0 (2) 2.3 (1) 48.0 (3) 2.3 (1) [15] ± ± [16] ± ± 65 (1) ± 4 (1) ÿ16 (1) ± ±
[11] ± [13] ± 136 (1) ± ÿ16 (1) ±

8 [11] [15] 165 (1) ÿ16 (1)

² wR2 = [
P

w(Uobs ÿ Ucalc)
2/
P

wU2
obs]

1/2 � 100%. ³ Gof = [
P

w(Uobs � Ucalc)
2/(nobs ÿ npar)]1/2; npar = number of parameters; nobs = number of observations = 54 [81 for 6_atl(9T)].



less negative and those of ""(H) increase, but are still too small

(Table 3). Agreement factors also improve, especially for the

model with anharmonic libration (model 1_al). Separate

GruÈ neisen parameters for libration and translation (Table 2,

model 1_a) improve the agreement slightly, but the compo-

nents of ""(N) and ""(C) are still negative or close to zero. In the

®nal model, 1_atl, 
G(lib.) and 
G(trans.) were restrained to be

equal; the re®ned value is close to the average of the two

values in model 1_a and of the right order of magnitude

(GruÈ neisen, 1926). Model 1_atl has one parameter less than

model 1_a, gives about the same agreement factors, and is

therefore more `economic'. It has one more parameter than

the harmonic one, but gives a substantially better description

of the ADP's. For model 1_atl, the systematic discrepancies

between observed and calculated Uij found for the harmonic

model are no longer present, the positive and negative

differences being distributed more evenly (Fig. 4b). The

increase in the differences with increasing temperature re¯ects

a corresponding increase of �(Uij). Overall, the comparison of

models 1_h and 1_atl documents the need for an anharmonic

description of the ADP's of HMT measured between 15 and

200 K.

The "" tensors of N, C and H re®ned using model 1_atl are

systematically smaller than those obtained from an ab initio

vibrational analysis (see below), about 0.0016 AÊ 2 on average.

Models with some or all "" tensors constrained to the calcu-

lated values give generally poor agreement factors, even worse

than those of a simple harmonic model (Table 2, models 2_atl

to 4_atl). Comparison between model 1_atl on one hand and

2_atl, 3_atl and 4_atl on the other indicates that the experi-

mental ADP's are systematically too small. The discrepancy is

therefore introduced into model 5_atl as a re®nable par-

ameter, the tensor ""(all). If ""(all) is assumed to re¯ect

systematic error in the diffraction intensities, it is expected to

show m3m Laue symmetry and thus to be isotropic. The ad

hoc parameter ""(all) improves the model signi®cantly. The

largest discrepancy between re®ned and calculated "" values is

always found for "33(H). Thus, in the ®nal model, 6_atl, ""(H) is

re®ned in addition to ""(all).

The robustness of model 6_atl has been tested by re®ning it

against all nine sets of diffraction data (Duckworth et al., 1970;

Stevens & Hope, 1975; Kampermann et al., 1994, 1995). The

introduction of three additional sets of data in the analysis and

the consequent extension of the temperature range do not

lead to signi®cant changes in the model of motion [Table 2,

model 6_atl(9T)].

The agreement factors of model 6_atl are better than those

of the harmonic model 1_h. They are inferior to those of the

family of anharmonic models 1_a but the number of re®nable

parameters is smaller in model 6_atl than in models 1. The

highest correlation coef®cient in model 6_atl is between !lib

and 
G (0.87). Other correlation coef®cients larger than 0.5

are between !trans and 
G (0.77), !trans and "all (0.75), and

!trans and !lib (0.62). Together with the small standard

uncertainties of the parameters, they indicate that the model is

well determined. As will be discussed below, all its numerical

results are physically reasonable and compare well with

numbers obtained from independent experiments. We there-

fore consider model 6_atl as the best partition of the observed

ADP's into temperature-dependent contributions from low-

frequency vibrations, temperature-independent contributions

from high-frequency vibrations and contributions from

inadequate treatment of absorption, extinction, valence elec-

tron density etc.

5. Intramolecular vibrations of
hexamethylenetetramine

The temperature-independent contributions to the ADP's

coming from intramolecular vibrations have been calculated

by ab initio methods for comparison with the corresponding

values from the ADP analysis. The calculations have been

performed at the restricted Hartree±Fock (RHF) level using

GAMESS (Schmidt et al., 1993). The structure was optimized

and analytical second derivatives of the potential energy

calculated, both at the 6-311G** basis-set level. Throughout

all calculations, Td molecular symmetry was enforced. The

starting point for the geometry optimization was the 15 K

neutron structure (Kampermann et al., 1995). The optimized

(or equilibrium) geometry is given in Table 1, where it is

compared to the 15 K neutron geometry.

As expected for this level of theory, the calculated equili-

brium distances are a little shorter than the experimental

values (not corrected for librational shortening or for

lengthening due to anharmonic bond-stretching potentials).

The calculated angles also differ somewhat from experiment,
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Table 3
Mean-square amplitudes from internal high-frequency vibrations for hydrogen.

For the coordinate system see text.

T (K) "11 � 104 (AÊ 2) "22 � 104 (AÊ 2) "33 � 104 (AÊ 2) "13 � 104 (AÊ 2)

ADP analysis 15±298 65 (1) 136 (1) 165 (1) 4 (1)
Vibrational analysis from IR and Raman (Cyvin, 1972) 0 68 141 237 5
Ab initio calculations 15 68 136 188 7
Ab initio calculations 100 68 136 188 8
Inelastic neutron scattering (Thomas & Ghosh, 1975) 100 68 129 204 5
Ab initio calculations 298 71 140 214 13
Vibrational analysis from IR and Raman (Cyvin, 1972) 298 72 146 275 12
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especially the ones including hydrogen atoms. The harmonic

vibrational frequencies and IR intensities have been calcu-

lated from the elements of the force-constant matrix using

masses of 12, 1.00782 and 14.0307 a.m.u. for C, H and N,

respectively.

A molecule of HMT in a crystal has 66 degrees of vibra-

tional freedom: six correspond to external modes of vibration,

namely three translations and three librations which the

molecule undergoes as a rigid body; the other 60 correspond

to internal vibrations. The ab initio frequencies of the internal

normal modes have values in the range 402 to 3247 cmÿ1, after

scaling with a factor of 0.91 to match the observed frequencies

(Bertie & Solinas, 1974). The normal-mode mean-square

displacements were calculated for each scaled frequency with

equation (1). Atomic displacements were obtained from

equation (5). Results are given in Table 3.

The 60 scaled frequencies corresponding to internal vibra-

tions and the six frequencies corresponding to external normal

modes have been used to calculate the vibrational contribu-

tion to the speci®c heat ( �CV), according to the relation

(Andrews, 1963)

�CV �
X

j

mNk��Ej
=T�2

exp��Ej
=T�

�exp��Ej
=T� ÿ 1�2 ; �22�

where the sum runs over the unique normal modes j;

m is their degeneracy, N is Avogadro's number, k is the

Boltzmann constant, T is the absolute temperature;

�Ej
� h- !eff� j�=k � 1:437 ~�eff� j�, where �Ej

is the Einstein

temperature in K and ~� the wave number in cmÿ1.

6. Discussion

The libration frequency !0 re®ned from ADP's varies

according to the model of motion in the range 46.7 (1)±

52.7 (3) cmÿ1; the translation frequency shows a slightly wider

range, 45.5 (3)±56.6 (4) cmÿ1. These values can be compared

to the frequency distribution functions for intermolecular

modes computed by Dolling & Powell (1970) with a force ®eld

derived from coherent neutron inelastic scattering measure-

ments on DHMT at 100 and 298 K. The density of states for

translation extends between 0 and 75 cmÿ1 with maxima at 51

and 69 cmÿ1, the corresponding function for libration extends

from 35 to 63 cm±1 with maxima between 35 and 41 cmÿ1 and

between 50 and 55 cmÿ1. They re¯ect the dispersion of the

acoustic and optic branches, respectively, and show that there

is a wide range of frequencies where the total density of states

receives contributions from both translation and libration. In

the mean-®eld model, the density of states for HMT is

approximated with two � functions, one for translation and the

other for libration. The frequencies of the various models

reported in Table 2 all fall within the distribution functions

calculated by Dolling & Powell (1970). The value of !eff(lib)

for HMT is 44.3 cmÿ1 at 298 K (model 6_atl), to be compared

with the expectation value h1=!2iÿ1=2 of 44.6 cmÿ1, calculated

by Dolling & Powell (1970) for HMT on the basis of their

measurements at room temperature on DHMT.

The GruÈ neisen parameters obtained by ADP analyses vary

in the range 2.3 (1)±5.3 (3). The higher value occurs when

anharmonic corrections are applied to translation only. These

values may be compared to the temperature dependence of

the dispersion curves observed by Dolling & Powell (1970) at

100 and 298 K. GruÈ neisen constants have been estimated at

Figure 4
Difference displacement parameters (Uobs ÿ Ucalc) for HMT at 15, 50, 80, 120, 160, 200 K, displayed as root-mean-square surfaces (Hummel et al., 1990);
solid lines indicate positive differences, dotted lines indicate negative differences, scale factor 9.23: (a) model 1_h, (b) model 1_atl. Note that the
differences for the hydrogen atoms are bigger than for carbon and nitrogen atoms because �(Uij) for the hydrogen atoms are a factor about 2 to 5 times
bigger than those of carbon and nitrogen atoms. The differences increase with temperature because �(Uij) increases with temperature.



each point in the Brillouin zone for which a frequency has

been measured at both 100 and 298 K. The values obtained

along the directions (���) and (00�) using the expression


G � ÿ��!298 ÿ !100�=!100��V100=�V298 ÿ V100�� �23�
have been averaged; they are, respectively, 2.2 and 2.5, in good

agreement with the values re®ned using model 6_atl with data

from either six or nine temperatures.

In Table 3, the values for ""(H) re®ned in model 6_atl are

compared to: (i) those calculated with the ab initio data at 15,

100 and 298 K; (ii) those determined by Thomas & Ghosh

(1975) from a normal-coordinate analysis based on neutron

inelastic scattering data at 100 K; and (iii) those obtained by

Cyvin (1972) from a vibrational analysis at 298 K based on IR

and Raman data. By de®nition, values of "" re®ned from

ADP's are independent of temperature. The ab initio values in

Table 3 show that this is a good approximation except for

"33(H), which increases by ~0.0025 AÊ 2 (or 14%) between 0 and

298 K. This increase is small compared to that of the ADP's

(Fig. 3). The values of "11 and "22 vary little, while the values of

"33 vary substantially with the method of determination. The

component "33(H) from ADP analysis is ~10±20% lower than

the ab initio values. Comparable differences have also been

observed for OC(NH2)2, C6D6 (FoÈ rtsch, 1997; Capelli et al.,

2000) and C6H6 in the C6H6±AgClO4 complex (Capelli, 1999).

The IR and Raman data are ~30% larger than ab initio values.

The result from neutron inelastic scattering is ~10% higher

than the ab initio value. The discrepancies between ab initio

and spectroscopic results are probably due to a combination of

experimental and assignment errors in the spectroscopic data

and de®ciencies in the ab initio calculations not accounted for

by the frequency scaling. In Table 4, the values for ""(N) and

""(C) calculated ab initio and used in the re®nement are

compared to those reported by Cyvin at 0 and 298 K (Cyvin,

1972). They agree well even though corresponding values for

""(H) show some signi®cant differences (Table 3).

It should be remembered here that the results discussed

above have been obtained including in the model of motion an

ad hoc overall tensor ""(all) that cannot be interpreted in terms

of motion. This tensor re®nes to the same magnitude in three

different models [Table 2, models 5_atl, 6_atl and 6_atl(9T)].

Its negative value implies that the observed ADP's are

systematically smaller than those corresponding to the models

of motion. What is ""(all) due to? Kampermann et al. (1995)

have reported that their neutron data are severely affected by

extinction and have corrected for this using three different

models. No extinction correction was applied to the 120 K

X-ray data (Kampermann et al., 1994) and only one re¯ection

severely affected by extinction was left out of the re®nement

of the 298 K X-ray data (Stevens & Hope, 1975). We believe

that the systematic discrepancy parameterized by ""(all) is

related to effects of extinction that have been insuf®ciently

accounted for. This would indeed give ADP's that are too

small. If true, this conclusion underlines the observation by

Kampermann et al. (1995) that none of the presently available

theories treat severe extinction adequately.

Finally, the molar heat capacity �CV calculated from the

translational and librational frequencies of model 6_atl and

from the scaled internal ab initio frequencies are compared

graphically in Fig. 5 with the experimental values of �CP

measured by Chang & Westrum (1960). The overall agreement

between experimental and calculated curves is surprisingly

good. In the temperature range 15±80 K, calculated values are

higher than experimental ones. This is due to the Einstein

approximation used in the ADP analysis (BuÈ rgi & Capelli,

2000), which neglects the linear dependence of the acoustic

phonons on the wavevector in the inner part of the Brillouin

zone. In the temperature range 120±350 K, the calculated

curve is lower than the experimental one. There are two likely

reasons for this discrepancy: (i) frequencies for the internal
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Table 4
Calculated mean-square amplitudes from internal high-frequency vibrations for nitrogen and carbon.

For the coordinate system, see text.

T (K) "11(N) (� 104AÊ 2) "22(N) (� 104AÊ 2) "11(C) (� 104AÊ 2) "22(C) (� 104AÊ 2) "33(C) (� 104AÊ 2)

Vibrational analysis from IR and Raman
(Cyvin, 1972)

0 13 10 15 12 16

Ab initio calculations 15 15 11 16 13 15
Vibrational analysis from IR and Raman

(Cyvin, 1972)
298 15 12 16 15 19

Ab initio calculations 298 16 12 17 15 18

Figure 5
Molar heat capacity of HMT: �CV calculated compared to �CP measured by
Chang & Westrum (1960).
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modes of vibration are too large, implying that the factor used

for scaling the ab initio frequencies is too large, or (ii) the

anharmonic contribution to �CP becomes important. If only the

®rst possibility is invoked, the scale factor would have to be

0.875 instead of 0.91. Such a small value seems unlikely if

compared to literature data (Scott & Radom, 1996). If the

second possibility is invoked, the required anharmonic

contribution is �CP � �CP ÿ �CV � V�2T=�0, with V the molar

volume, � the volume expansion coef®cient and �0 the

compressibility of the crystal at zero pressure. Using this

relation, we estimated �0 from the difference between the two

curves in the temperature range 200±350 K. The calculated

average value of the compressibility is 0.231 GPaÿ1, corre-

sponding to a bulk modulus of 4.33 GPa.

Bridgman (1947) performed volumetric measurements of

HMT in the pressure range 0±3.92 GPa. The compressibility �0

was obtained by ®tting his data to the Vinet universal equation

of state (Vinet et al., 1986, 1989).1 The compressibility is found

to be 0.116 (5) GPaÿ1, corresponding to a bulk modulus of

8.96 (37) GPa. The bulk modulus calculated from elastic

constants is 8.36 GPa (HaussuÈ hl, 1958). These experimental

values indicate that our simple-minded estimate of the

compressibility is too large, that the actual difference �CP ÿ �CV

is about twice as large, and that the scaling factor should be

0.95. Compared to literature data, this value seems too high

(Scott & Radom, 1996). Whether this is due to the use of an

isolated molecule model in the ab initio calculation or to a

systematic error in �CP cannot be decided on the basis of the

information presently available.

7. Conclusions

Anharmonic corrections have been introduced into a mole-

cular-mean-®eld harmonic normal-mode model of the

temperature evolution of ADP's. Changes of frequency with

temperature are taken into account by a GruÈ neisen parameter

for each normal mode. The normal vibrations are assumed not

to change their shape during thermal expansion. Such a

description has the same algebraic form as a harmonic model

and is therefore called quasi-harmonic.

The model has been used to analyze ADP's of HMT

obtained from neutron and X-ray diffraction experiments in

the temperature range 15±298 K. The analysis allows, for the

®rst time, dissection of ADP's into contributions from low-

frequency high-amplitude vibrations and their anharmonicity,

from high-frequency low-amplitude vibrations, and from other

temperature-independent effects such as inadequate treat-

ment of absorption, extinction, valence-electron density etc.

The librational and translational frequencies and the

GruÈ neisen parameters obtained from ADP's are comparable

in magnitude to those calculated from dispersion curves

pertaining to temperatures of 100 and 298 K (Dolling &

Powell, 1970). If the model for calculating the ADP's includes

an ad hoc additive term to account for insuf®cient extinction

corrections of the diffraction data, then the temperature-

independent part of the ADP's due to high-frequency internal

vibrations compares reasonably well with results from ab initio

calculations on HMT in the gas phase. Finally, the heat

capacity �CV of HMT has been calculated, the contribution of

the compressibility to �CP has been estimated and the results

compared to experimental data.
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